Anti-glycophorin single-chain Fv fusion to low-affinity mutant erythropoietin improves red blood cell-lineage specificity.

نویسندگان

  • Noah D Taylor
  • Jeffrey C Way
  • Pamela A Silver
  • Pablo Cironi
چکیده

The presence of erythropoietin (Epo) receptors on cells besides red blood cell precursors, such as cancer cells or megakaryocyte precursors, can lead to side effects during Epo therapy including enhanced tumor growth and platelet production. It would be ideal if the action of Epo could be limited to erythroid precursors. To address this issue, we constructed single-chain variable fragment (scFv)-Epo fusion proteins that used the anti-glycophorin 10F7 scFv amino-terminal to Epo analogues that would have minimal activity alone. We introduced the Epo mutations N147A, R150A and R150E, which progressively weakened receptor affinity in the context of Epo alone, as defined by cell proliferation assays using TF-1 or UT-7 cells. Fusion of these mutant proteins to the 10F7 scFv significantly rescued the activity of the mutant proteins, but had a relatively small effect on wild-type Epo. For example, fusion to the 10F7 scFv enhanced the activity of Epo(R150A) by 10- to 27-fold, while a corresponding fusion to wild-type Epo enhanced its activity only up to 2.7-fold. When glycophorin was blocked by antibody competition or reduced by siRNA-mediated inhibition of expression, the activity of 10F7 scFv-Epo(R150A) was correspondingly reduced, while such inhibition had essentially no effect on the activity of 10F7 scFv-Epo(wild-type). In addition, potent stimulation of Epo receptors by 10F7 scFv-Epo(R150A) was observed in long-term proliferation and viability assays. Taken together, these results indicate that a combination of targeting and affinity modulation can be used to engineer forms of Epo with enhanced cell-type specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis.

Chemical coupling to carrier red blood cells (RBCs) converts tissue type plasminogen activator (tPA) from a problematic therapeutic into a safe agent for thromboprophylaxis. The goal of this study was to develop a more clinically relevant recombinant biotherapeutic by fusing a mutant tPA with a single-chain antibody fragment (scFv) with specificity for glycophorin A (GPA) on mouse RBCs. The fus...

متن کامل

Construction and characterization of a fusion protein of single-chain anti-CD20 antibody and human beta-glucuronidase for antibody-directed enzyme prodrug therapy.

The CD20 antigen is an attractive target for specific treatment of B-cell lymphoma. Antibody-directed enzyme prodrug therapy (ADEPT) aims at the specific activation of a nontoxic prodrug at the tumor site by an enzyme targeted by a tumor-specific antibody such as anti-CD20. We constructed a fusion protein of the single-chain Fv anti-CD20 mouse monoclonal antibody (MoAb) 1H4 and human beta-glucu...

متن کامل

Targeted erythropoietin selectively stimulates red blood cell expansion in vivo.

The design of cell-targeted protein therapeutics can be informed by natural protein-protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cell...

متن کامل

[Development of anti-tumor blood vessel antibodies by phage display method].

Tumor blood vessels are essential for tumor growth. Therefore, these blood vessels are potential targets for anti-cancer therapy. The purpose of this study is to develop anti-tumor endothelial cell (TEC) antibodies for delivering anti-cancer agents or drugs. To achieve this goal, we utilized the phage antibody display library method to create monoclonal antibodies in vitro. Accordingly, we deve...

متن کامل

Only selected light chains combine with a given heavy chain to confer specificity for a model glycopeptide antigen.

The M and N human blood group glycopeptide Ags are carried on RBCs by glycophorin A. Previous results suggested that the murine humoral immune response against the N, but not the M, Ag is restricted. In addition, these results suggested that particular highly homologous heavy chains might be able to combine promiscuously with various light chains to yield anti-N specificity. To examine this, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2010